Towards Lifestyle Segmentation via Uploaded Images from Surveys and Social Networks

نویسندگان

  • Ines Daniel
  • Daniel Baier
چکیده

Today, people are more and more active in social networks and communicate via text massages, images or “likes”. Especially images are used to assist a person to provide their opinion. Images show the daily life or things that interest people (e.g. van House 2011). Thereby a huge amount of information is provided. The evaluation of images would enable a comprehensive classification of the consumer. Therefore the technologies of image classification like support vector machines (SVM) are needed. This study provides an approach to analyze images for market research. For this, we conducted a holiday survey. We asked 433 people about typical holiday activities and to upload their favorite holiday images. Overall 1,348 images have been uploaded. With the help of SVM, we could classify the images and evaluate particularly useful features. The study’s findings advance the possibilities of market research methods and provide numerous implications for researchers and practitioners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparing between the impacts of text based indexing and folksonomy on ranking of images search via Google search engine

Background and Aim: The purpose of this study was to compare the impact of text based indexing and folksonomy in image retrieval via Google search engine. Methods: This study used experimental method. The sample is 30 images extracted from the book “Gray anatomy”. The research was carried out in 4 stages; in the first stage, images were uploaded to an “Instagram” account so the images are tagge...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015